Leaf hydraulic conductance is coordinated with leaf morpho-anatomical traits and nitrogen status in the genus Oryza
نویسندگان
چکیده
Leaf hydraulic conductance (K leaf) is a major determinant of photosynthetic rate in plants. Previous work has assessed the relationships between leaf morpho-anatomical traits and K leaf with woody species, but there has been very little focus on cereal crops. The genus Oryza, which includes rice (Oryza sativa) and wild species (such as O. rufipogon cv. Griff), is ideal material for identifying leaf features associated with K leaf and gas exchange. Leaf morpho-anatomical traits, K leaf, leaf N content per leaf area, and CO2 diffusion efficiency were investigated in 11 Oryza cultivars. K leaf was positively correlated with leaf thickness and related traits, and therefore positively correlated with leaf mass per area and leaf N content per leaf area, and negatively with inter-veinal distance. K leaf was also positively correlated with leaf area and its related traits, and therefore negatively correlated with the proportion of minor vein length per area. In addition, coordination between K leaf and CO2 diffusion conductance in leaves was observed. We conclude that leaf morpho-anatomical traits and N content per leaf area strongly influence K leaf. Our results suggest that more detailed anatomical and structural studies are needed to elucidate the impacts of leaf feature traits on K leaf and gas exchange in grasses.
منابع مشابه
Linking Xylem Hydraulic Conductivity and Vulnerability to the Leaf Economics Spectrum—A Cross-Species Study of 39 Evergreen and Deciduous Broadleaved Subtropical Tree Species
While the fundamental trade-off in leaf traits related to carbon capture as described by the leaf economics spectrum is well-established among plant species, the relationship of the leaf economics spectrum to stem hydraulics is much less known. Since carbon capture and transpiration are coupled, a close connection between leaf traits and stem hydraulics should be expected. We thus asked whether...
متن کاملCoordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza)1[W][OA]
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO2 access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 access...
متن کاملFertilization but not irrigation influences hydraulic traits in plantation-grown loblolly pine
The goal of the study was to explore hydraulic traits in a 4-year-old loblolly pine (Pinus taeda L.) plantation to better understand plasticity of this species to resource availability. The influence of a factorial combination of irrigation (130 mm year 1 versus 494 mm year ) and fertilization (0 kg N ha 1 year 1 versus 80 kg N ha 1 year ) on stand-level transpiration, canopy stomatal conductan...
متن کاملCoordination of Leaf Photosynthesis, Transpiration, and Structural Traits in Rice and Wild Relatives (Genus Oryza).
The genus Oryza, which includes rice (Oryza sativa and Oryza glaberrima) and wild relatives, is a useful genus to study leaf properties in order to identify structural features that control CO(2) access to chloroplasts, photosynthesis, water use efficiency, and drought tolerance. Traits, 26 structural and 17 functional, associated with photosynthesis and transpiration were quantified on 24 acce...
متن کاملLeaf Hydraulic Conductance for a Tank Bromeliad: Axial and Radial Pathways for Moving and Conserving Water
Epiphytic plants in the Bromeliaceae known as tank bromeliads essentially lack stems and absorptive roots and instead take up water from reservoirs formed by their overlapping leaf bases. For such plants, leaf hydraulic conductance is plant hydraulic conductance. Their simple strap-shaped leaves and parallel venation make them suitable for modeling leaf hydraulic conductance based on vasculatur...
متن کامل